Rollout Algorithms for Discrete Optimization: A Survey
نویسنده
چکیده
This chapter discusses rollout algorithms, a sequential approach to optimization problems, whereby the optimization variables are optimized one after the other. A rollout algorithm starts from some given heuristic and constructs another heuristic with better performance than the original. The method is particularly simple to implement, and is often surprisingly e↵ective. This chapter explains the method and its properties for discrete deterministic optimization problems.
منابع مشابه
Average-Case Performance of Rollout Algorithms for Knapsack Problems
Rollout algorithms have demonstrated excellent performance on a variety of dynamic and discrete optimization problems. Interpreted as an approximate dynamic programming algorithm, a rollout algorithm estimates the value-to-go at each decision stage by simulating future events while following a heuristic policy, referred to as the base policy. While in many cases rollout algorithms are guarantee...
متن کاملRollout Algorithms for Combinatorial Optimization
We consider the approximate solution of discrete optimization problems using procedures that are capable of magnifying the effectiveness of any given heuristic algorithm through sequential application. In particular, we embed the problem within a dynamic programming framework, and we introduce several types of rollout algorithms, which are related to notions of policy iteration. We provide cond...
متن کاملRevised June 1997 Rollout Algorithms for Combinatorial Optimization
We consider the approximate solution of discrete optimization problems using procedures that are capable of magnifying the effectiveness of any given heuristic algorithm through sequential application. In particular, we embed the problem within a dynamic programming framework, and we introduce several types of rollout algorithms, which are related to notions of policy iteration. We provide cond...
متن کاملA Discrete Hybrid Teaching-Learning-Based Optimization algorithm for optimization of space trusses
In this study, to enhance the optimization process, especially in the structural engineering field two well-known algorithms are merged together in order to achieve an improved hybrid algorithm. These two algorithms are Teaching-Learning Based Optimization (TLBO) and Harmony Search (HS) which have been used by most researchers in varied fields of science. The hybridized algorithm is called A Di...
متن کاملPERFORMANCE OF DIFFERENT ANT-BASED ALGORITHMS FOR OPTIMIZATION OF MIXED VARIABLE DOMAIN IN CIVIL ENGINEERING DESIGNS
Ant colony optimization algorithms (ACOs) have been basically introduced to discrete variable problems and applied to different research domains in several engineering fields. Meanwhile, abundant studies have been already involved to adapt different ant models to continuous search spaces. Assessments indicate competitive performance of ACOs on discrete or continuous domains. Therefore, as poten...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010